

BIOMASS ENERGY TRENDS AND LESSONS LEARNED IN THE WEST

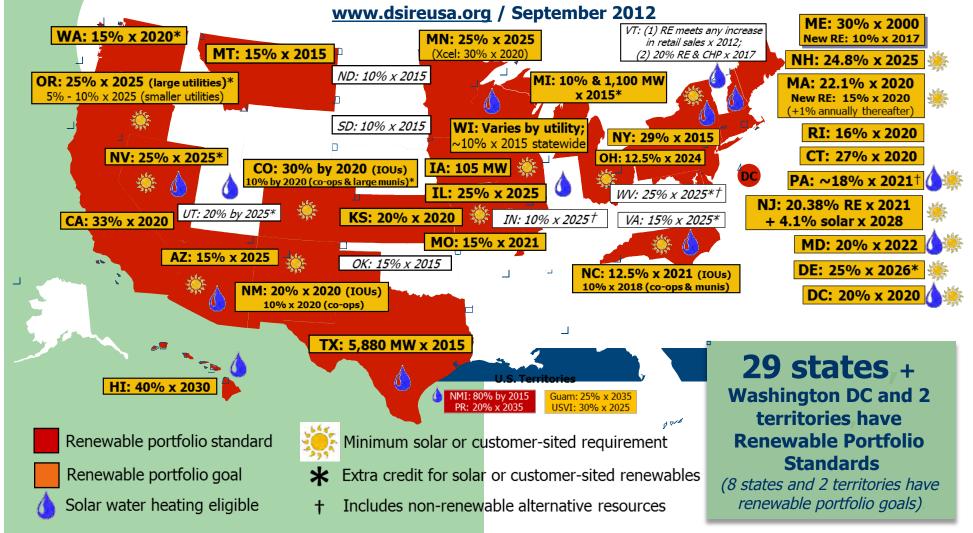
Utah Biomass Summit September 18, 2012 Tad Mason, TSS

Presentation Overview

- Introduction
- California Biomass Sector
- Objectives of Forest Restoration
- Example: Wilseyville Product Yard Study
- Observations
- Lessons Learned

2

Abbreviated History of the California Biomass Power Sector


• PURPA 1978

- Market response 60 new bipower plants.
- Power contract buyouts.
- Currently 33 biopower plants, 28 operating.
- RPS 33% renewable by 2020.

Feed in tariff program.

Renewable Portfolio Standard Policies

Current Trends in California

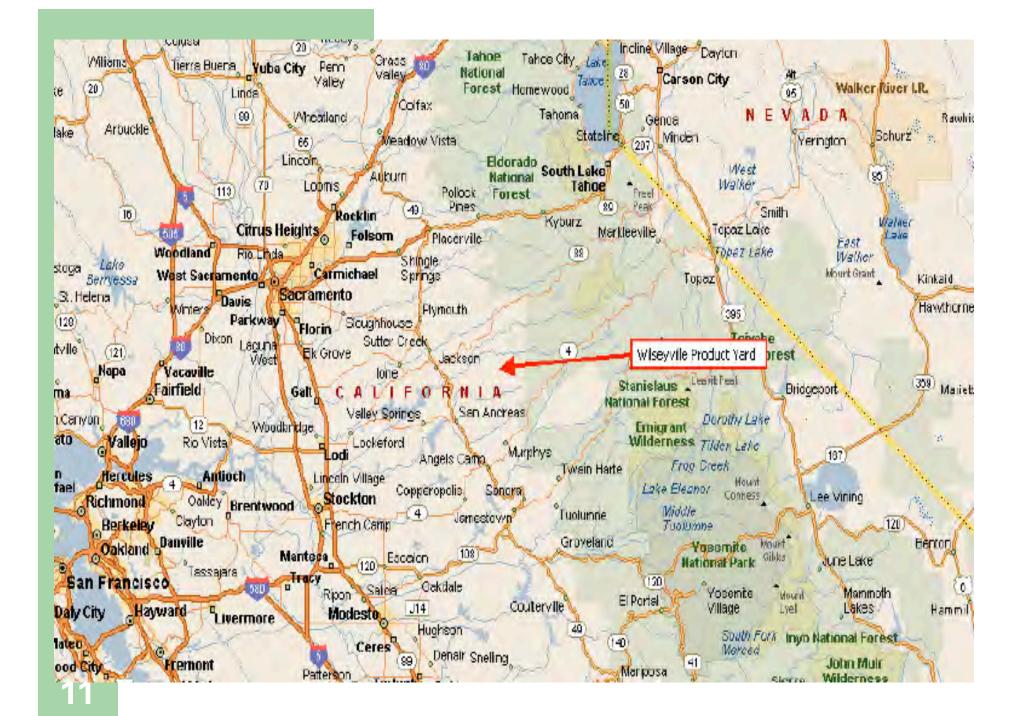
- Convert coal fired power plants to biomass.
 - Three plants recently converted
 - Two others targeted
- High interest in community-scale bioenergy projects.
- Legislative mandates regarding feed in tariffs.
 - FiT ReMAT
 - SB 1122
- Create and maintain strategic defensible space near communities and infrastructure at risk.

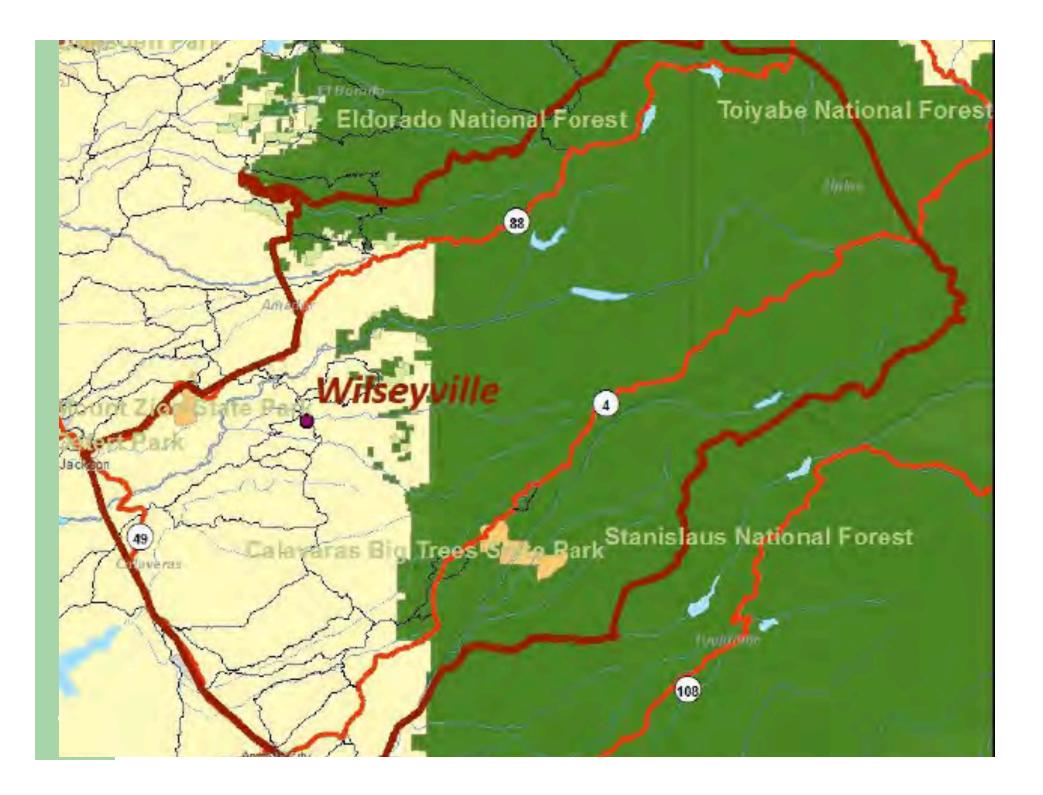
Forest Restoration Objectives

- Address the significant risk of catastrophic wildfire.
- Restore forest/range ecosystems to robust conditions.
- Reintroduce fire to fire dependent landscapes.
- Create and maintain strategic defensible space near communities and infrastructure at risk.
 - Rural communities.
 - Upland watersheds.
 - Power lines transmission and distribution systems.
 - Aqueducts or other water delivery systems.
- Train and employ local residents.

Forest Restoration Byproducts

- Small logs
 6" to 14" diameter
- Micro logs
 2" to 5" diameter
- Limbs/tops
- Brush


Examples of Value-Added Uses


- Lumber
- Power Generation/Thermal Heat Recovery
- Firewood
- Posts and Poles
- Landscape Cover/Soil Amendment
- Animal Bedding
- Fuel Pellets
- Other Stuff

Wilseyville Product Yard Study

Forest Biomass Availability

BIOMASS SOURCE	LOW RANGE (BDT/YEAR)	HIGH RANGE (BDT/YEAR)
Timber Harvest Residuals	21,000	42,000
Fuels Treatment Activities – USFS/BLM	8,250	13,750
Fuels Treatment Activities – FSC/NRCS/CHIPS	5,625	13,125
Urban Wood Waste – Wilseyville Transfer Stations	160	175
TOTAL	35,035	69,050

Small Log and Biomass Costs

BIOMASS MATERIAL SOURCE	DELIVERED MATERIAL	LOW RANGE	HIGH RANGE
Timber Harvest Residuals	Chips	\$45/BDT	\$60/BDT
Pre-Commercial Thinning Activities and Timber Harvest	Small Logs	\$32/GT	\$42/GT
Fuels Treatment Activities – USFS/ BLM	Chips	\$45/BDT	\$60/BDT
Fuels Treatment Activities – Fire Safe Councils/NRCS/CHIPS	Chips	\$50/BDT	\$70/BDT
Urban Wood Waste –Received in raw form 15	Limbs, Construction Debris, Misc. Wood	\$5/BDT	\$15/BDT

Targeted Value-Added Opportunities Selected by Project Steering Committee

- Small Scale Combined Heat and Power
- Small Scale Mobile Dimension Sawmill
- Firewood Processing
- Biomass Fiber to Local Markets

2MW Combined Heat and Power Facility

- Annual fuel usage of 16,000 BDT/year at \$40 - \$50/BDT.
- Primary revenue generated through power sales. Biochar also generates revenue.
- Assume 75% debt/25% equity in year one. 5% interest on debt.
- Federal production tax credit of \$.011/kWh.
- Capital costs are \$10.4M.

Commercial Scale Firewood Operation

- Annual resource needs of 400 truckloads of logs (about 2 loads per day).
- Procure logs at \$575 to \$800 per load.
- Firewood sales of \$125 to \$225 per cord (FOB Wilseyville).
- Targeted sales of 3,200 cord per year.
- Capital costs are \$163,850.

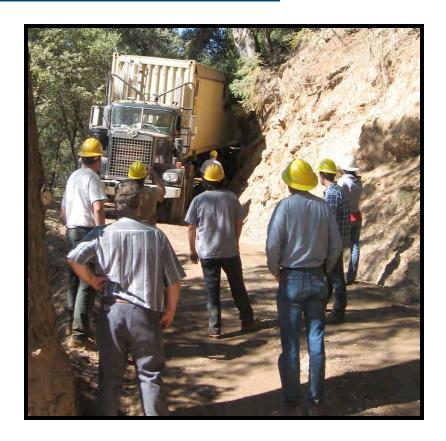
Small Scale Sawmill Operation

- Annual sawlog resource needs of 640 MBF per year (about 1 load/day).
- Procure logs at \$375 to \$500 per MBF (\$1,500 to \$2,000 per load.
- Lumber sales of \$375 to \$800 per MBF (FOB Wilseyville).
- Targeted sales of 8,000 MBF per year.
- Secondary manufacturing is an opportunity.
- Capital costs are \$114,602.

Biomass Fiber Markets

- As additional forest biomass is generated (Cornerstone CFLR, etc), 40,000 plus BDT per year will be generated from TSA.
- Forest biomass demand is driven primarily by power generation.
- Additional markets should be considered (compost, landscape cover).

Product Yard – Observations Part I


- Site integrated enterprises that can share infrastructure, equipment, overhead, labor and resources.
- Create a business model that will operate year round.
- Utilize a full range of resources from small logs to biomass.
- Incorporate secondary manufacturing whenever possible.

Product Yard – Observations Part II

- Locate product yard in strategic location. Retired sawmill sites can work well.
 - Adjacent to major highways.
 - Appropriate land use zoning is helpful.
 - Infrastructure on site:
 - Water
 - Power

Restoration Lessons Learned Part I

- Operate transparently within the community:
 - Openness
 - Communication
 - Accountability
- Hire and train local talent.

Restoration Lessons Learned Part II

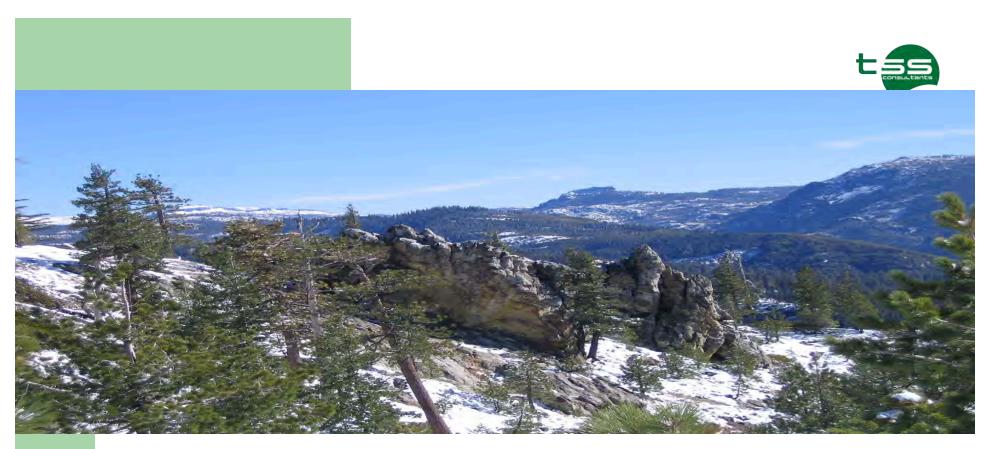
- Develop communication plan that uses a variety of outreach tools:
 - Website
 - Handouts/Project overview/FAQ
 - Workshops/Community meetings
 - Media relations

Restoration Lessons Learned - Part III

- Participate in community forums/collaborative groups.
- Conduct demonstration projects with high visibility.
 - Install signage explaining project objectives/desired future conditions.
 - Document before and after conditions, volume removed, and acres treated.

Restoration Lessons Learned - Part IV

- Team with land management agencies to hold workshops or public meetings to discuss land management plans, project status, and accomplishments.
- Work with state policy makers on an RPS/FiT program.


Positive Effects of Fuel Treatments

Wallow Wildfire, Apache National Forest, Arizona, May 2011, 500,000 acres, largest wildfire in Arizona history

QUESTIONS, HECKLING REMARKS?

Tad Mason, CEO TSS Consultants Rancho Cordova, California 916.266.0546 tmason@tssconsultants.com www.tssconsultants.com