

NET AIR EMISSIONS REDUCTION DUE TO FOREST BIOMASS DIVERSION TO AN EXISTING BIOMASS POWER FACILITY

July 1, 2011 Sacramento, California

- Background
- Challenges and Opportunities
- Biomass Recovery Methodology
- Air Emissions Tracking
- Results
- Other Placer County Biomass Initiative Projects

CHALLENGES AND OPPORTUNITIES

Challenges

- Century of successful fire suppression activities have allowed forest conditions in the West to deteriorate.
- Wildfire scale and intensity have grown significantly in the last two decades.
- Impacts to watersheds, habitat, and local economies are severe.
- Cost to treat forest fuels are high.
- Very limited markets for biomass material.
- State and federal \$ for fuels treatment are of limited scope and duration.

Opportunities

- Alternative markets for biomass material are developing.
- Collection, processing and transport methodologies are more efficient.
- Renewable portfolio standards are in place providing markets for biomass power.
- Short term federal and state incentives for biomass removal (e.g., BCAP).
- Long term fungible emission reduction credit offsets or GHG reduction credits.

PLACER COUNTY BIOMASS TEAM

- Placer County Biomass Program
- Placer County Air Pollution Control District
- TSS Consultants
- Spatial Informatics Group

PLACER COUNTY AIR POLLUTION CONTROL DISTRICT

- Air quality in Placer County
- Programs:
 - Permitting and inspections of stationary sources
 - Enforcement of Air Pollution Control Regulations
 - Air Monitoring
 - Air Quality Planning CEQA & Attainment
 - Clean Air Grants and Incentive Programs
 - Air Toxics
 - Manage Open Burning Forestry and Agriculture

BIOMASS DIVERSION STUDY OBJECTIVES

- Compare net air impacts of biomass combustion open pile burning and controlled combustion at an existing biomass power generation facility.
- Confirm costs to collect, harvest and transport biomass material from the forest to an existing biomass power generation facility.

WOODY BIOMASS WASTES

CURRENT FATE – OPEN BURNING

ALTERNATE FATE – RENEWABLE ENERGY

BIOMASS WASTE FOR ENERGY GHG OFFSET PROTOCOL

DATA TRACKING

- Collection and Processing
 - Diesel engines on grinder and loaders Dust from grinding operation
- Transport
 - Diesel engines on chip van transports Dust from vehicle travel on dirt roads
- Biomass-to-energy plant
 Energy production
 Biomass fuel use

- Achievements
 - Transported 7,089 green tons (4,200 BDT)
 - Biomass fuel characteristics: 9,000 Btu/lb, 40% moisture
 - 4,652 MW electricity generation
- Economics
 - Approx. \$58.50/BDT (\$3.25/MMBtu)
 - Working to increase operating efficiency and reduce cost

COSTS TO COLLECT, PROCESS, AND TRANSPORT

EQUIPMENT	\$/OPERATING HOUR	AVERAGE OPERATING HOURS/DAY	COST \$/BDT
Grinder – Bandit Beast	\$400	4	\$17.19
Excavator – Linkbelt 135	\$125	3.7	\$4.97
Excavator – Linkbelt 290	\$150	3.7	\$5.96
Chip Truck - Kenworth	\$85	9	\$27.13
Water Truck – Ford L9000	\$60	3	\$1.93
Service Truck – Ford F 350	\$25	2	\$0.54
Crew Truck – Ford F 250	\$20	2	\$0.43
Low Bed – Kenworth	\$100	.27	\$0.29
TOTAL			\$58.43

[Purchase Price of Fuel at BioEnergy Facility - Cost to Process and Transport]

GHG CREDIT IMPLEMENTATION

LAKE TAHOE REGIONAL BIOMASS PROJECT

FOREST FUEL TREATMENTS

- Quantify GHG reductions for forest fuel treatment projects
 - Wildfire reduction size, intensity
 - Forest growth rate enhancement
- Research Team
 - U.S. Forest Service Pacific Southwest Research Station, U.C. Berkeley, and Spatial Informatics Group

STUDY AREA

WILDFIRE MITIGATION

Bruce Springsteen, Engineer and Compliance and Enforcement Manager Placer County APCD 530.745.2337 bsprings@placer.ca.gov Tad Mason, CEO TSS Consultants 916.266.0546 tmason<u>@tssconsultants.com</u>