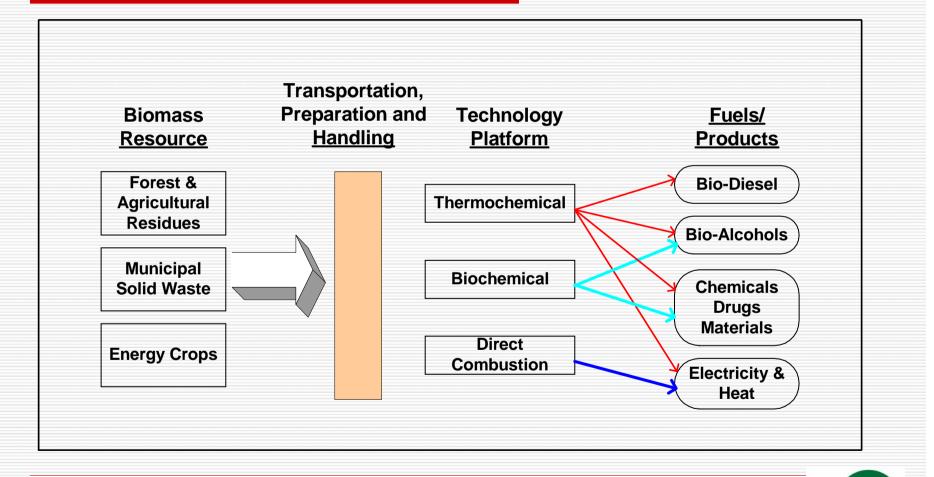


Alcohol Fuels from Biomass – Assessment of Production Technologies

Pacific Coast Clean Energy Forum Portland, Oregon November 28 & 29, 2007

Introduction

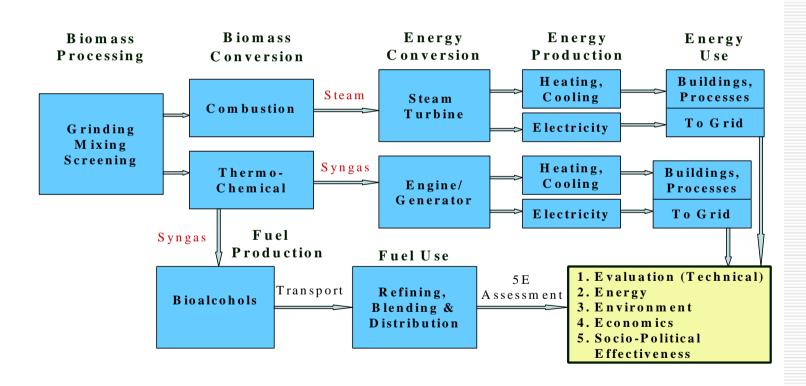
- Who was behind it?
- Purpose of Study
- Cellulose-to-Bioalcohols technologies examined
- Study approach
- Findings, conclusions, and path forward



Purpose of Study

- Review and evaluate candidate technologies for producing ethanol and other alcohols from cellulosic biomass feedstocks, describing development progress to date and future prospects for these technologies.
- Review and summarize relevant past bioalcohol production technology projects studied or proposed in California.
- Identify opportunities for new projects involving applications of candidate bioalcohol production technologies using California's cellulosic biomass resources.
- Identify remaining regulatory, economic and institutional obstacles to bioalcohol project development and describe state and federal government roles in addressing these challenges.

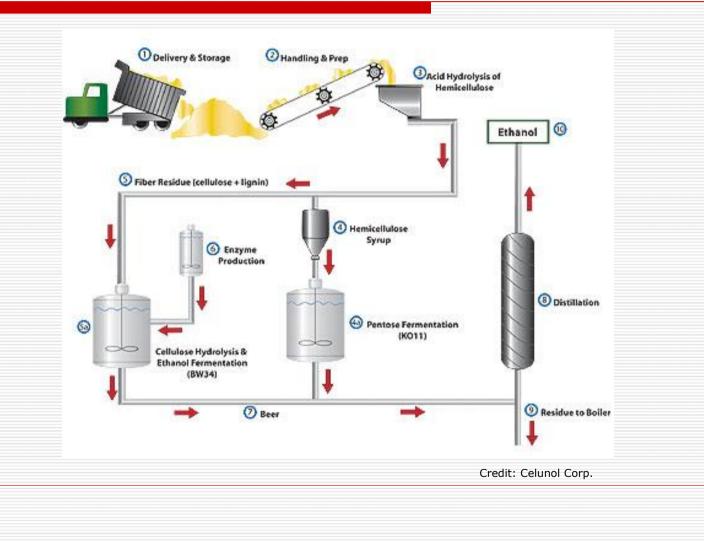
Potential Biofuels and Bioenery Pathways



Technologies Examined – Thermochemical Processes

- Pyrolysis/Steam Reforming no air or oxygen
- Gasification with air or oxygen
- High Temperature Gasification >3500 F with air or oxygen
- Thermal Pyrolysis no oxygen or air
- Thermal Oxidation combustion at or near stochiometry
- Integrated Thermochemical Conversion/Oxidation)
- 13 Developers Examined

Thermochemical Technology



Technologies Examined – Biochemical Processes

- Acid Hydrolysis/Fermentation
- Enzymatic Hydrolysis/Fermentation
- Other Biological Processes
- 25 Developers Examined

Biochemical Technology

"5E" Assessment

- E1 Technology Evaluation
- E2 Energy Efficiency
- E3 Environmental Impacts
- E4 Economic Viability
- E5 Socio-political Effectiveness

Comparison of Thermochemical and Biochemical Systems

	A) Thermochemical Conversion Mixed Alcohols & Electricity	B) Biochemical Conversion Ethanol & Electricity	C) Thermochemical Conversion Electricity Only
<u>Plant Size</u> DT/day	500	2,205	500
Products (E1)			
Ethanol Fuel (gallons/DT)	80	59	N/A
Electricity (kWh/DT)	550	205	1400
Total Net Energy Efficiency (E2)	50%	33%	28%
Plant Emissions (E3)	see report	see report	see report
Economics (E4)			
Capital Cost, \$M	66	205	60
Operating Cost, \$M/yr	14.9	107.0	16.4
Electricity Production Cost (\$/kWh)	\$0.071	N/A	\$0.071
Alcohol Production Cost (\$/gallon)	\$1.12	\$2.24	N/A

N/A: Not applicable; E1, E2 and E4 values are given with +15% uncertainty

Opportunities and Challenges

- U.S. Biomass Potential the "Billon Ton Study"
- CA Biomass Potential 33 million tons
- Technical Challenges
- Environmental and Regulatory Challenges
- Economic and Institutional Challenges
- Market-Related Challenges

Government Roles and Initiatives

California Government

- Energy Commission's Public Interest Energy Program (PIER)
- → Governor's Executive Order S-06-06
- Bioenergy Action Plan
- Bioenergy Interagency Working Group
- AB 32 − Global Warming Solutions Act

Federal Government

- U.S. DOE Biomass Research and Development Initiative
- U.S. Dept. of Agriculture
- U.S. Defense Advanced Research Projects Agency

Federal Funding Efforts - 2007

11/5 - Ground Broken for First Commercial Cellulosic Biomass Plant in the U.S. 8/27 - DOE offers up to \$33.8 Million to Support Cellulosic Biofuel Processes

10/1 - DOE Invests \$30 Million to Launch Bioenergy Research Centers 5/1 - DOE Offers \$200 Million for Small-Scale Cellulosic Biorefineries

9/26 - DOE and USDA Offer \$18 Million for Biomass Research

6/26 - DOE Awards \$375 Million for Three Bioenergy Research Centers

Conclusions and Recommendations

- Thermochemical technology with the highest probability of near-term commercial success is an integrated pyrolysis/steam reforming process – possibly as low as \$1.12/gallon production cost
- Biochemical technology hydrolysis and fermentation was estimated to be approximately \$2.24/gallon production cost at present time
- Projected improvements could lower this cost to below \$1.50/gallon

Conclusions and Recommendations (cont'd)

- Ethanol and bioalcohols from cellulosic biomass has several promising technologies
- Still need for significant research, development, demonstration, and deployment
- Demonstration and commercial scale plants need to be built, validated, and improved
- Government still needed to implement regulations, provide increased RDD&D support and grant incentives to promote tech advancement
- However, government should not mandate the type(s) of technology they believe to be the future winners, but support all promising technologies

Questions/Comments?

Alcohol Fuels from Biomass – Assessment of Production Technologies

July 2007

Dennis Schuetzle, Gregory Tamblyn and Frederick Tornatore TSS Consultants Rancho Cordova, CA www.tssconsultants.com

> Thomas MacDonald California Energy Commission Sacramento California 95814

Western Governor's Association National Biomass State and Regional Partnership Report

Frederick Tornatore Partner/Senior Vice President TSS Consultants 2724 Kilgore Road Rancho Cordova, CA 95670 916.638.8811 x104 Cell: 916.601.0531 fatoxic@tssconsultants.com www.tssconsultants.com

